Matemática

Soma de frações: como funciona

A soma de frações é o método para demonstrar, em uma única fração, a adição ou subtração de duas ou mais frações.

Acessibilidade

Para entender a soma de frações é necessário lembrar os conhecimentos sobre a fração.

Frações

Frações são números que representam partições de algum número em determinadas parcelas iguais. A notação mais usada para representar frações é uma barra horizontal, em que o numerador é o número que localiza-se na parte superior da barra e representa o divisor; já o denominador localiza-se embaixo da barra e simboliza em quantas parcelas o numerador será dividido. Conforme a ilustração:

Fração é formada pelo numerador, sobre a barra, e do denominador, sob a barra.
Elementos de uma fração

Exemplo:

  • A fração 1 sobre 5 é chamada de um quinto e significa que o número inteiro um (numerador), foi dividido em exatamente cinco partes iguais (denominador). Além disso, essa fração representa o número decimal 0,2, pois se multiplicarmos ele por 5, teremos o número inteiro 1 novamente. Caso queira relembrar o assunto, você pode conferir nosso Blog sobre o que são números inteiros.

Perceba que todos os números decimais racionais podem ser representados por alguma fração e, como já deve ter imaginado, não somente uma, mas infinitas representações.

Lembre-se que a fração seis quartos é igual a 1,5, portanto, qualquer fração que represente 1,5 é, pela lógica, igual a fração seis quartos. Exemplos:

seis quartos igual a três meios, igual a doze oitavos, igual a sessenta quarenta avos, igual a trinta vinte avos, igual a seis k sobre 4k.

Note que para uma fração ser equivalente a alguma outra fração, o numerador e denominador devem ser multiplicados pelo mesmo número.

Simplicação de Fração

Como falado anteriormente, qualquer número decimal racional tem infinitas representações fracionárias e, dessa maneira, a simplificação de fração é usada para determinar a menor fração inteira possível, tanto no numerador como no denominador.

Para isso, devemos ir dividindo o numerador e o denominador por um número, de forma que ao dividir o numerador e o denominador por esse número ambos resultem em números inteiros. Dividimos novamente por outro número ou pelo mesmo número até que não seja possível realizar as duas divisões simultaneamente pelo mesmo número.

Exemplo:

trinta quarenta avos.

Perceba que essa fração é equivalente a outras frações e podem ser simplificadas pelo mesmo número (2, 5 ou 10). Ao dividir o numerador e denominador por 2, obtemos:

trinta quarenta avos vezes um meio dividido por um meio, é igual a quinze vinte avos.

Ademais, quinze e vinte são múltiplos de cinco, portanto:

quinze vinte avos vezes um quinto dividido por um quinto, é igual a três quartos.

Dessa forma, como três e quatro não apresentam nenhum divisor em comum, dizemos que três quartos é a fração reduzida que representa o número decimal 0,75.

Soma de Frações

Até agora vimos apenas o que é uma fração, seus componentes, suas equivalências e como simplificar uma fração para a forma reduzida. Porém, agora vem a parte das frações que grande parte das pessoas sentem dificuldade, como somá-las?

Sabemos que uma fração é um número que foi dividido uma quantidade determinada de vezes, tomamos o número 1 como exemplo:

Representação de uma unidade inteira.
Representação de uma unidade inteira.

Digamos que esse retângulo acima, fosse dividido em três partes iguais, dessa forma, obteríamos:

Representação de uma unidade divida em três partes iguais. (Um terço, um terço e um terço).
Representação de uma unidade divida em três partes iguais.

Perceba que ao somarmos as três partes, devemos obter 1 novamente, ou seja, um terço mais um terço mais um terço é igual a 1, isto é uma soma de frações com denominadores iguais.

Por outro lado, ao dividirmos o retângulo em três partes distintas, obtemos:

Representação de uma unidade divida em três partes iguais. (Um meio, dois quintos e um décimo).
Representação de uma unidade divida em três partes iguais.

Note que não importa a divisão que fizemos do retângulo, a soma de todas as partes continua sendo um e, portanto, um meio, mais, dois quintos, mais, um décimo é igual a um. Em contraponto com a outra situação, aqui temos uma soma de frações em que os denominadores são diferentes.

A soma de frações pode ter duas situações: quando os denominadores são iguais ou quando os denominadores são diferentes. Veremos agora como efetuar a soma em cada um dos casos.

Soma de Frações com Denominadores Iguais

            Essa situação é a mais fácil e prática para resolver, pois se os denominadores de uma soma de frações são idênticos, basta somar os numeradores e manter o mesmo denominador, ou seja:

'x' dividido por 'a', mais, 'y' dividido por 'a', é igual a 'x' mais 'y', dividido por 'a'.

Exemplo 1:

Tornamos a soma dois quintos, mais, seis quintos, mais três quintos como exemplo. Como falado anteriormente, se os denominadores são iguais, basta realizar a soma dos numeradores e manter o mesmo denominador, isto é:

Dois quintos, mais, seis quintos, mais, três quintos, é igual a dois mais seis mais três, dividido por cinco, que é igual a onze quintos.

Dessa maneira, a fração onze quintos é a fração que representa a soma dos números dois quintos mais seis quintos mais três quintos.

Exemplo 2:

Vejamos a subtração treze oitavos, menos, três oitavos, menos, um oitavo como exemplo.

Já sabemos somar frações com denominadores iguais, mas e subtrair? Funciona da mesma forma, afinal a subtração nada mais é que a soma de dois números, sendo um deles negativo. Ou seja, treze oitavos, menos, três oitavos é o mesmo que treze oitavos, mais, menos três oitavos.

Dessa forma, como temos denominadores iguais, basta realizarmos as operações com o numerador e manter o denominador.

Treze oitavos, menos, três oitavos, menos, um oitavo, é igual a treze menos três menos um, dividido por oito, que é igual a nove oitavos.

Assim, nove oitavos é o número que representa a subtração treze oitavos, menos, três oitavos, menos, um oitavo.

Soma de Frações com Denominadores Diferentes

Por outro lado, se a soma das frações com denominadores iguais é simples e prática, a soma com denominadores diferentes requer um pouco mais de atenção.

Primeiramente, vamos relembrar que uma fração possui várias equivalências, exemplo: a fração um meio pode ser representada por dois quartos, quatro oitavos, dez vinte avos., etc. Ademais, é importantíssimo que você saiba encontrar o MMC (mínimo múltiplo comum) entre dois ou mais números para podermos prosseguir com a soma de frações com denominadores diferentes. Se você desejar, pode relembrar o que é MMC e como encontrá-lo em outro post aqui do Blog.

Baseando-se nessas considerações, vamos realizar a seguinte soma de frações:

Cinco oitavos, mais, dezessete dezesseis avos.

A soma acima possui duas frações com denominadores distintos, dessa forma, não podemos apenas somar os numeradores. Em consequência disso, devemos deixar as frações com o mesmo denominador, para poder somar os numeradores. Com base nisso, sabendo que para uma fração ser equivalente a outra, devemos multiplicar o numerador e o denominador pelo mesmo número, podemos obter a seguinte igualdade:

Cinco oitavos, mais, dezessete sobre dezesseis avos, é igual a, cinco vezes 'x' sobre oito vezes 'x', mais, dezessete vezes 'y' sobre dezesseis vezes 'y'.
Igualando a soma das frações a uma soma equivalente.

Assim, a soma de frações com denominadores distintos tem duas etapas: igualar os denominadores e somar os numeradores.

Para igualar os denominadores de frações distintas usamos o MMC dos denominadores. Dessa forma, como MMC(8, 16) = 16, então o denominador final da fração será 16. Portanto, utilizando essa informação e a igualdade feita anteriormente, temos:

Como o denominador da soma das frações é 16, temos que:
Cinco vezes 'x' sobre oito vezes 'x', mais, dezessete vezes 'y' sobre dezesseis vezes 'y', implica que, oito vezes 'x' é igual a dezesseis, e, dezesseis vezes 'y' é igual a dezesseis.
Percepção formada pelas variáveis x e y e o denominador final 16.

Isolando as variáveis, sabemos que x é igual a 2 e y é igual a 1, portanto, ao substituir na igualdade, obtemos:

Cinco vezes dois dividido por oito vezes dois, mais, dezessete vezes um dividido por dezesseis vezes um, é igual a, dez sobre dezesseis mais dezessete sobre dezesseis.
Substituindo 2 e 1 nas variáveis x e y, respectivamente.

Perceba que agora os denominadores são iguais, portanto, basta somar os numeradores e obter o resultado:

Dez dividido por dezesseis, mais, dezessete dividido por dezesseis, é igual a vinte e sete dividido por dezesseis.
Resultado final.

Logo, a fração vinte e sete sobre dezesseis avos representa a soma das frações cinco oitavos, mais, dezessete dezesseis avos. E então, já está craque em frações? Comenta aqui pra gente!

banner da plataforma Aprova Total

TEMAS:

avatar

Ver mais artigos de Redação Aprova Total >

Compartilhe essa publicação:

Veja Também

Assine a newsletter do Aprova Total

Você receberá apenas nossos conteúdos. Não enviaremos spam nem comercializaremos os seus dados.